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Abstract

The present work considers the turbulent Von Kármán flow generated by two counter-rotating smooth flat (viscous stirring) or bladed
(inertial stirring) disks. Numerical predictions based on one-point statistical modeling using a low-Reynolds number second-order full
stress transport closure (RSM model) are compared to velocity measurements performed at CEA (Commissariat à l’Énergie Atomique,
France). The main and significant novelty of this paper is the use of a drag force in the momentum equations to reproduce the effects of
inertial stirring instead of modeling the blades themselves. The influences of the rotational Reynolds number, the aspect ratio of the cav-
ity, the rotating disk speed ratio and of the presence or not of impellers are investigated to get a precise knowledge of both the dynamics
and the turbulence properties in the Von Kármán configuration. In particular, we highlighted the transition between the merged and
separated boundary layer regimes and the one between the Batchelor [Batchelor, G.K., 1951. Note on a class of solutions of the
Navier–Stokes equations representing steady rotationally-symmetric flow. Quat. J. Mech. Appl. Math. 4 (1), 29–41] and the Stewartson
[Stewartson, K., 1953. On the flow between two rotating coaxial disks. Proc. Camb. Philos. Soc. 49, 333–341] flow structures in the
smooth disk case. We determined also the transition between the one cell and the two cell regimes for both viscous and inertial stirrings.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The flow between two finite counter-rotating disks
enclosed by a cylinder, known as the Von Kármán (Von
Kármán, 1921) geometry, is of practical importance in
many industrial devices. Counter-rotating turbines may
indeed be used to drive the counter-rotating fans in gas-tur-
bine aeroengines. Moreover, this configuration is often
0142-727X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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used for studying fundamental aspects of developed turbu-
lence and especially of magneto-hydrodynamic turbulence.

From an academic point of view, the laminar flow
between two infinite disks has indeed justified many works
since the beginning of the controversy between Batchelor
(1951) and Stewartson (1953) on the flow structure. Batch-
elor (1951) solved the system of differential equations rela-
tive to the steady rotationally-symmetric viscous flow
between two infinite disks. In the exactly counter-rotating
regime, the distribution of tangential velocity is symmetri-
cal about the mid-plane and exhibits five distinct zones:
two boundary layers developed on each disk, a transition
shear layer at mid-plane, where the axial and tangential
velocities change sign and two rotating cores on either side
of the transition layer. The central cores rotate with a
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tangential velocity proportional to the disk velocities. The
proportionality coefficient is always inferior to 1. This solu-
tion can be regarded as the connection of two Batchelor
flows in the rotor–stator configuration. As stated by Batch-
elor (1951) himself, ‘‘this singular solution may not be real-
izable experimentally, of course’’, which supposes that
another solution may exist. In 1953, Stewartson (1953)
found that the flow is divided into only three zones for
large values of the Reynolds number ReH = XH2/m > 100
based on the interdisk space H (X is the rotation rate of
the disks and m the kinematic viscosity of the fluid): one
boundary layer on each disk separated by a zone of zero
tangential velocity and uniform radial inflow. Lance and
Rogers (1962) found numerically in the exactly counter-
rotating regime a Stewartson solution for ReH = 1023.
The existence at large Reynolds numbers of the Stewartson
solution has been confirmed by the analysis of McLeod and
Parter (1974) in an infinite counter-rotating disk system.
The Stewartson solution has also been obtained numeri-
cally by Pesch and Rentrop (1978) at ReH = 2000. Kreiss
and Parter (1983) have proved the existence and non-
uniqueness of solutions at sufficiently large Reynolds num-
bers for the two-disk configuration. Thus, both Batchelor
and Stewartson solutions are possible depending on the ini-
tial and boundary conditions but the Batchelor prediction
has not been mentioned in the literature for the exact coun-
ter-rotating disk case. Pearson (1965) obtained numerically
a basic inviscid solution of the Von Kármán flow, which
differs from both the Batchelor and Stewartson solutions:
at high Reynolds number (ReH = 103), the solution is
unsymmetrical and the main body of the fluid rotates faster
than that of either disk. In the counter-rotating regime,
Dijkstra and Van Heijst (1983) showed numerically that
the transition from the one cell to the two cell structure
occurs for a given Reynolds number and corresponds to
the appearance of a detached shear layer on the slower
disk. Recently, Yang and Liao (2006) solved the Von Kár-
mán swirling viscous flow using the homotopy analysis
method. The reader is referred to the work of Holodniok
et al. (1981) and to the review of Zandbergen and Dijkstra
(1987) for a more extensive survey until 1987.

In the turbulent case, the Von Kármán flow is a model
flow to study the turbulence characteristics on small scales.
The main flow is axisymmetric and so offers an interesting
intermediate situation between two-dimensional and
three-dimensional flows. Fauve et al. (1993) reported
measurements of pressure fluctuations in the turbulent
Von Kármán flow. They showed that the pressure proba-
bility function is strongly non-Gaussian and displays an
exponential tail toward low pressure. Maurer et al. (1994)
used low-temperature helium gas to obtain high Reynolds
numbers and well-defined scaling properties. They estab-
lished the turbulence characteristics such as structure func-
tions or the probability density function of the velocity
differences and confirmed that turbulence on small scales
has universal properties independent of the forcing. Mor-
dant et al. (1997) investigated the dynamical behavior of
the Von Kármán flow at moderate to high Reynolds num-
bers using spatially averaged measurements. Data of the
power input and of pressure fluctuations at the wall are suf-
ficient to calculate the main turbulence characteristics such
as the velocity fluctuations or the typical length scales.
Cadot et al. (1997) measured the mean rates of energy
injection and energy dissipation in steady regimes of turbu-
lence in the flow between counter-rotating stirrers. The
smooth stirrers are found to be less efficient in setting the
fluid into motion than in the case of bladed disks. Pinton
et al. (1999) measured the power consumption of the turbu-
lent Von Kármán flow at constant Reynolds number and
showed that power fluctuations occur and involve coherent
fluid motions in the whole cell. Marié and Daviaud (2004)
performed full velocity measurements linking velocity fluc-
tuations with the turbulent drag in this geometry. They
showed especially that the turbulent drag is dominantly
generated by coherent structures at the largest scales of
the flow. Cadot and Le Maı̂tre (2007) considered the turbu-
lent between two co- and counter-rotating stirrers. They
measured the instantaneous torques driving the flow and
compared them to similarity laws having no dependence
on the Reynolds number with a good agreement.

Ravelet et al. (2004, 2005) reported experimental evi-
dence of a global bifurcation on a highly turbulent flow
between two counter-rotating impellers. The transition
between the symmetric and the unsymmetric solutions is
subcritical and the system keeps a memory of its history.
Monchaux et al. (2006) investigated the properties of the
mean and most probable velocity fields in the same config-
uration. They showed that these two fields are described by
two families of functions (Leprovost et al., 2006) depending
on both the viscosity and the forcing. For large values of
the Reynolds number, in some regions, the flow behaves
like a Beltrami flow in which vorticity is locally aligned
with velocity. Boroński (2005) simulated the laminar Von
Kármán flow between two counter-rotating disks equipped
or not by straight blades. For a rotational Reynolds num-
ber Re = XR2/m, based on the disk radius R, equal to 500,
the poloidal-to-toroidal ratio is increased from 13% in the
smooth disk case to 51% in the bladed disk case.

A renewal of interest for the Von Kármán flow is born
from the dynamo experiments. The flow between counter-
rotating impellers is considered as a possible candidate
for the observation of a homogeneous fluid dynamo less
constrained than the Riga and Karlsruhe devices. The flow
needs to be highly turbulent in order for nonlinearities to
develop in the magnetic induction. Numerous experimental
(Bourgoin et al., 2002; Volk et al., 2006) or numerical
(Bourgoin et al., 2004; Ravelet et al., 2005) studies have
then been dedicated to magneto-hydrodynamics turbulence
in the Von Kármán geometry. In the latter work, the flow
has been optimized using a water model experiment, vary-
ing the driving impeller configuration, well described in
Ravelet (2005).

To our knowledge, only very few numerical works
have been devoted to the characterization of the mean
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and turbulent flow properties in the Von Kármán geometry.
Kilic et al. (1994) performed a combined numerical and
experimental study of the transitional flow between smooth
counter-rotating disks with a central hub for �1 6 C 6 0,
Re = 105 and G = H/R = 0.12, where C is the ratio between
the rotating speeds of the two disks and G is the aspect ratio
of the cavity. They compared mean radial and tangential
velocity measurements using a single-component laser
Doppler anemometer with computed results either the
low-Reynolds number k � � turbulence model of Launder
and Sharma (1974) or a laminar elliptic code. For
C = �1, the weakly turbulent flow is of Stewartson type,
whereas the laminar computations and measurements pro-
duce a Batchelor type of flow. The transitions from laminar
to turbulent regime and from Batchelor to Stewartson flow
structure occur for C = �0.4. A good agreement is obtained
in the rotor–stator configuration (C = 0) and in the exactly
counter-rotating regime (C = �1) but at intermediate val-
ues of C, the agreement is less satisfactory. The same
authors Gan et al. (1994) performed the same comparisons
when a radial outflow of air is superimposed.

In this paper, we present comparisons between numeri-
cal predictions using a Reynolds Stress Model, denoted
RSM, and velocity measurements performed at CEA for
the turbulent flow between two counter-rotating disks.
The main objective is to acquire a precise knowledge of
both the flow structure and the turbulence properties of
the high turbulent Von Kármán flow between smooth disks
for a large range of the flow control parameters. A second
objective is to propose an easy and efficient way to model
impellers and to quantify their effect on the Von Kármán
flow at high Reynolds number.
Fig. 1. Sketches of the cavity with (a) relevant notatio
2. Experimental set-up

Velocity measurements using a laser Doppler velocime-
ter have been performed at CEA in the Von Kármán geom-
etry during the Ph.D. thesis of Ravelet (2005) and then by
Monchaux et al. (2006) in two cases: viscous and inertial
stirrings.

2.1. Geometrical configuration

We consider the Von Kármán flow generated by two
counter-rotating disks fitted or not by straight blades in a
cylindrical vessel, as illustrated in Fig. 1a and b. The geo-
metrical parameters are fixed by the values studied experi-
mentally by Ravelet (2005). The cylinder and disk radii are
respectively Rc = 100 mm and R = 92.5 mm. The radius
ratio R/Rc is then fixed to 0.925. The distance between
the inner faces of the disks H can vary between 1 and
180 mm. Disks 1 and 2 rotate, respectively clockwise
and counterclockwise with two rotation rates denoted X1

and X2. The motor rotation rates can be varied indepen-
dently in the range 0–900 rpm, with jX1jP jX2j. We use
bladed disks (n blades of height h equal to 10 or 20 mm)
to ensure inertial stirring or flat disks for viscous stirring.
The impellers are driven by two independent brushless
1.8 kW motors, with speed servo loop control.

2.2. Measurement technique

Velocity measurements are performed using a laser
Doppler velocimetry (LDV). A basic acquisition of 190.000
randomly sampled values of one velocity component at one
n in the smooth disk case and (b) straight blades.
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point of the flow lasts about two minutes. Due to geometry
constraints, we can measure the axial Vz and tangential Vh

mean velocity components. From this raw data, one may
compute the time-averaged flow at every point on a 11 * 15
grid.
2.3. Flow control parameters

In the smooth case, the mean flow is mainly governed by
three control parameters: the aspect ratio of the cavity G,
the rotational Reynolds number Re based on the cylinder
radius and the ratio C between the two rotation rates,
defined as follows:

0:01 6 G ¼ H
Rc

6 1:8 2� 105
6 Re ¼ X1R2

c

m
6 4� 106

� 1 6 C ¼ �X2

X1

6 0

where m is the kinematic viscosity of water. In the exact
counter-rotating regime and in the rotor–stator configura-
tion, the ratio C is equal to �1 and 0, respectively. We de-
fine also the radial r* = r/Rc and axial z* = 2z/H

coordinates. Thus, r* = 0 is obtained at the center of the
disks and r* = 1 on the outer cylinder for r = Rc. In
the same way, z* = �1 on the lower disk 1 and z* = 1 on
the upper disk 2.

In the case of inertial stirring, the number of straight
blades n and their dimensionless height h* = h/Rc have also
to be considered.
3. Statistical modeling

The predictions of the Reynolds Stress Model (RSM)
used in the present work have already been validated in
the rotor–stator configuration (C = 0) (Elena, 1994; Elena
and Schiestel, 1996; Poncet et al., 2005; Poncet, 2005) for
a wide range of aspect ratio G and Reynolds number Re.
It showed that this level of closure is adequate in such flow
configurations, while the usual k � � model, which is blind
to any rotation effect presents serious deficiencies. Thus,
the purpose of this paper relying on a well-established tur-
bulent model is to extend its application to new flow con-
ditions and to get a better insight into the dynamics of
the highly turbulent Von Kármán flow.
3.1. The differential reynolds stress model (RSM)

The flow studied here presents several complexities (high
rotation rate, wall effects, transitional zone, shear layer),
which are severe demands for turbulence modeling
methods. Our approach is based on one-point statistical
modeling using a low-Reynolds number second-order full
stress transport closure derived from the Launder and
Tselepidakis (1994)) model and sensitized to rotation
effects (Elena and Schiestel, 1996). This approach allows
for a detailed description of near-wall turbulence and is
free from any eddy viscosity hypothesis. The general equa-
tion for the Reynolds stress tensor Rij can be written:

dRij

dt
¼ P ij þ Dij þ Uij � �ij þ T ij ð1Þ

where Pij, Dij, Uij, �ij, and Tij, respectively denote the pro-
duction, diffusion, pressure-strain correlation, dissipation
and extra terms.

The diffusion term Dij is split into two parts: a turbulent
diffusion DT

ij, which is interpreted as the diffusion due to
both velocity and pressure fluctuations (Daly and Harlow,
1970) and a viscous diffusion Dm

ij, which cannot be
neglected in the low-Reynolds number region.

In a classical way, the pressure-strain correlation term
Uij can be decomposed in three parts: a slow nonlinear
return to isotropy modeled as a quadratic development in
the stress anisotropy tensor and damped near the wall, a
linear rapid part which includes cubic terms and a wall cor-
rection applied to the linear part which is modeled using
the Gibson and Launder hypothesis (Gibson and Launder,
1978). In this last term, the widely adopted length scale
k3/2e�1 is replaced by the length scale of the fluctuations
normal to the wall.

The viscous dissipation tensor has been modeled in
order to conform with the wall limits obtained from Taylor
series expansions of the fluctuating velocities (Launder and
Reynolds, 1983). The extra term Tij accounts for implicit
effects of the rotation on the turbulence field, it contains
additional contributions in the pressure-strain correlation,
a spectral jamming term, inhomogeneous effects and
inverse flux due to rotation, which impedes the energy cas-
cade (Cambon and Jacquin, 1989). A full description of the
extra term Tij is given in Schiestel and Elena (1997).

The dissipation rate e equation to solve is the one pro-
posed by Launder and Tselepidakis (1994). The turbulence
kinetic energy k equation which is redundant in a RSM
model is still solved however, in order to get a more stable
numerical convergence. It is verified that after convergence
the turbulence kinetic energy k is exactly equal to 0.5Rjj

within 0.05% at each grid point.

3.2. Numerical method

The computational procedure is based on a finite vol-
ume method using staggered grids for mean velocity com-
ponents with axisymmetry hypothesis in the mean. The
computer code is steady elliptic and the numerical solution
proceeds iteratively. It has been verified that a 120 · 120
mesh in the (r,z) frame is sufficient in smooth rotating disk
cases to get grid-independent solutions. A refined mesh
160 · 160 is necessary to model flows with straight blades.
It is to be compared to the 140 · 80 mesh used by Elena
(1994), Elena and Schiestel (1996), Poncet (2005), and Pon-
cet et al. (2005) in rotor–stator systems. The calculation is
initialized using realistic data fields, which satisfy the
boundary conditions. About 20000 iterations (almost 20
hours on the bi-Opteron 18 nodes cluster of IRPHE) are
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necessary to obtain the numerical convergence of the calcu-
lation. The stress component equations are solved using
matrix block tridiagonal solution to enhance stability using
non-staggered grids.

3.3. Boundary conditions

At the wall, all the variables are set to zero except for the
tangential velocity Vh, which is set to X1r on disk 1, � X2r

on disk 2 and zero on the stationary cylinder. The usual
value � = mk,jk,j/(2k) is imposed at the wall for the dissipa-
tion rate � of the turbulence kinetic energy. At the periph-
ery of the disks, for R 6 r 6 Rc, Vh is supposed to vary
linearly from zero on the stationary cylinder up to X1R
on disk 1 and �X2R on disk 2 and the radial Vr and axial
Vz velocity components are fixed to zero.

We cannot implement real straight blades in our two-
dimensional code. So we limit to modeling their most
important effect, which is to increase the efficiency of the
disks in forcing the flow. Thus, we add a volumic drag
force f in the equation of the tangential velocity component
Vh. If we consider n straight blades, the volumic drag force
f can be written as

f ¼ n
2pr

F ¼ n
4pr

qCDjV reljV rel ð2Þ

where F is the drag force of one blade, q the fluid density,
CD the dimensionless drag coefficient and Vrel = Xir � Vh

the relative tangential velocity on disk i = 1,2. The force
is designed to make the fluid velocity closer to the local disk
velocity near the disks. This form is close to the one pro-
posed by Boroński (2005) for spectral code. For curved
blades, the same approach can be used: a volumic lift force
can be added in the equation of the radial velocity compo-
nent Vr. This will be the subject of a next study.

We can consider here that the height of the blades
(h* = 0.1 or 0.2) is much larger than the boundary layer
thickness d/Rc ’ Re�1/2

6 2 · 10�3 (for Re = 2 · 105). In
this case, Blevins (1984) proposed some values for the drag
coefficient (expected errors of ±20%) in an uniform flow.
For a thin rectangular plate perpendicular to the mean
flow, the value of CD is in the range [1.05–1.9], depending
on the size of the plate. As the flow is here not uniform
along the blades and as the drag coefficient is supposed
to decrease for increasing values of the Reynolds number,
CD is expected to be lower than 2 depending on the flow
and blade parameters. Some calculations have been per-
formed for C = �1, G = 1.8, Re = 2 · 105 and straight
blades (h* = 0.2, n = 8) to study the influence of the trailing
coefficient CD. The differences on the extrema of the tan-
gential velocity component are inferior to 0.5% for CD in
the range [0.1–2]. Thus, we have chosen to fix the value
of CD equal to 0.5.

The reader is thus referred to Elena (1994), Elena and
Schiestel (1996), Poncet et al. (2005), and Poncet (2005)
for more details about the RSM model and the numerical
method.
4. Smooth disk case: Viscous stirring

In this section, we consider the turbulent flow between
two counter-rotating flat smooth disks. Thus, we ensure a
viscous stirring: the actuation is done by the setting in rota-
tion of the smooth walls and the movement is communi-
cated to the fluid by diffusion of the momentum through
the boundary layers. We investigate the influence of the
Reynolds number Re, the aspect ratio of the system G,
and the ratio C between the two rotation rates on the mean
and turbulent fields.
4.1. Flow structure in the exact counter-rotating regime

The structure of the mean flow in the exact counter-
rotating regime is henceforth globally well known: it can
be decomposed into two toroidal cells in the tangential
direction h (not modeled here because of the axisymmetry
hypothesis in the mean) and into two poloidal recircula-
tions in the (r,z) plane (Ravelet et al., 2005).

We focus here on the poloidal cells (Fig. 5a): the fluid at
the top and the bottom of the cavity is forced into two
opposite rotation speeds, and is then entrained by the
disks. Consequently, a shear layer develops in the equato-
rial plane. This is perceptible in Fig. 2, which presents axial
variations of the tangential velocity component for
C = �1, Re = 6.28 · 105, G = 1.8 at five radial locations
in the range r* = 0.346–0.865. The radial and axial velocity
components are not presented here because they are almost
zero in the whole cavity both in the experiments and in the
calculations. The tangential component is quite weak too
except in the two very thin boundary layers, which develop
on each disk and whose size is shown in Fig. 3 and close to
the periphery, where the shear layer is observed. For
r* 6 0.476 (Fig. 2a and b), the profile exhibits a Stewartson
flow structure: a quasi zero tangential velocity zone
enclosed by two boundary layers on each disk. The flow
in the boundary layers is characterized by a strong tangen-
tial velocity component (positive on disk 1 and negative on
disk 2) and by a radial outward component not shown
here. Towards the periphery (Fig. 2c–e), the flow gets of
Batchelor type with five distinct zones: two boundary lay-
ers on the disks, a shear layer at mid-plane and two zones
enclosed between the two. These last two zones are charac-
terized by a weak but non-zero tangential velocity compo-
nent. The shear layer thickens when the local radius r*

increases. Contrary to the laminar case reported by Kilic
et al. (1994), there is practically no radial inflow around
z* = 0.

A good agreement between the numerical results and the
experimental data is obtained even the values are quite
weak. The RSM model catches the appearance and the
thickening of the shear layer. On the other hand, the size
of the LDV probe volume in the axial direction (1 mm) is
not negligible compared to the boundary layer thickness.
It is the main reason why the agreement between the
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numerical predictions and the measurements is less satis-
factory in the boundary layers as it can be seen Fig. 2.

The transition between the Stewartson and Batchelor
flow structures can also be seen in Fig. 3 from the radial
evolution of the boundary layer thickness d for the same
set of parameters. Very close to the rotation axis, the axial
flow impinges the disks and creates very large boundary
layers on both disks, whose size decreases with the local
radius as expected (Gauthier et al., 2002). The flow is then
of Stewartson type. During the transition, d increases as
already observed by Poncet (2005) for rotor–stator flows
(C = 0). For r* ’ 0.47, the flow is clearly of Batchelor type
and then, d decreases towards the periphery of the cavity. It
confirms the visualizations of the laminar flow between co-
and counter-rotating disks (�0.2 6 C 6 0.87) performed by
Gauthier et al. (2002). They found indeed that the bound-
ary layer thickness of the slower disk decreases for increas-
ing values of the radial location r*.

We investigate the influence of the Reynolds number on
the mean flow. Fig. 4 presents radial profiles of the tangen-
tial velocity component for C = �1, G = 1.8 and four Rey-
nolds numbers at different axial locations. The numerical
predictions of the RSM model are compared to present
LDV measurements and to the velocity measurements of
Ravelet (2005) for Re P 105. These data are also compared
to the local disk 1 and disk 2 velocities, which are respec-
tively X1r and �X2r. The numerical data for Re P 6.28 ·
105 merge almost into a single fitting curve. It means that
there is practically no effect of the Reynolds number on
the mean field ever since the flow is turbulent. For
Re = 2 · 105, a significant increase of the magnitude of
Vh is observed whatever the axial position, which is charac-
teristic of the laminar regime. The critical Reynolds num-
ber for the transition from the laminar to the turbulent
state is thus overestimated compared to the one obtained
by Ravelet (2005): Re = 105. Nevertheless, the present
velocity measurements performed on the same experimen-
tal set-up as Ravelet (2005) confirm the numerical results.
Compared to the previous measurements, an effect of Re

is observed on the radial profiles of Vh at the periphery
of the cavity. In fact, the critical Reynolds number for
the laminar to turbulent state transition depends strongly
on the boundary conditions and especially on the condi-
tions imposed in the radial gap 0.925 6 r* 6 1. We recall
that a linear profile is imposed in the numerical code for
Vh, that does not take into account any recirculation zone
and that could explain this difference. This tendency for
relaminarization of the RSM model has already been
noticed by Poncet et al. (2005) and Poncet (2005) in the
rotor–stator configuration. As a conclusion, there is no sig-
nificant effect of the Reynolds number on the mean flow for
Re P 105, which confirms the results of Cadot et al. (1997)
and Ravelet (2005).

Fig. 5 presents the corresponding streamline patterns.
The mean flow is divided into two symmetric poloidal cells,
whose size is equal here to 0.5H along the axial direction
and independent of the Reynolds number. In the radial
direction, the diameter of the largest eddies observed is of
the order of the disk radius R, showing this scale is the
order of the energy scale injection. Experimentally, Ravelet
et al. (2005) observed a weak dissymmetry of the flow in the
(r,z) plane, which disappears for increasing values of the
Reynolds number.
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The influence of the aspect ratio of the cavity G on the
mean field has also been investigated for 0.01 6 G 6 1.8
(Fig. 6) and a given Reynolds number Re = 1.3 · 106. Note
that the radial and most of all the axial velocity compo-
nents are quite weak compared to the tangential one and
to the disk velocity. For G = 1.8, the boundary layers are
separated as already mentioned and the mean tangential
velocity component is constant in the core of the flow.
For G = 0.01, the flow is of torsional Couette type with
merged boundary layers as Vh (Fig. 6a) varies linearly in
the median region of the flow. This is to be compared to
the value G = 0.012 obtained in the rotor–stator configura-
tion (Poncet, 2005). For intermediate values G ’ 0.4, both
boundary layers interact. The transition between the two
main regimes is continuous and not clear from the Vh-pro-
file. Nevertheless, if we consider the Vz-profile (Fig. 6c), we
F
C
(R
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can clearly see that the axial velocity component is almost
zero whatever the value of G, expect for G = 0.4, where the
fluid moves towards the upper and lower disks. The transi-
tion can also be characterized by considering the Vr-pro-
files (Fig. 6b), which exhibit the thinning of the boundary
layers for increasing values of the aspect ratio.
–1 –0.8 –0.6 –0.4 –0.2 0

0

0.1

0.2

0.3

Γ

S
c
/H

Fig. 8. Size Sc/H of the smallest cell against C for G = 1.8 (RSM).
Comparison between (–) the smooth disk case (Re = 1.3 · 106), (–– ) the
bladed disk case (Re = 2 · 105) and previous numerical results of (s) Kilic
et al. (1994) and (e) Gan et al. (1994) in the smooth disk case.
4.2. Flow structure for �1 6 C 6 0

Another interesting feature in counter-rotating disk
flows is the influence of the ratio C between the two rotat-
ing disk speeds (Fig. 7). The Reynolds number and the
aspect ratio of the cavity are respectively fixed to
Re = 1.3 · 106 and G = 1.8. We focus on the counter-rotat-
ing disk case for which �1 6 C 6 0.

In the exact counter-rotating regime (Fig. 7a), the flow is
symmetric and two cells with the same size 0.5H coexist.
For small rotating speed differences, the structure of the
mean flow is strongly dominated by the faster disk
(Fig. 7b). Varying the ratio C displaces the shear layer
towards the slower disk. The cell close to the lower disk
invades almost the whole interdisk spacing for C = �0.7
(Fig. 7d). For C = �0.2 (Fig. 7e), the flow structure resem-
bles the one observed in the rotor–stator configuration
(Poncet, 2005) with streamline patterns parallel to the
rotating axis. This transition between the two cell and the
one cell regimes can be seen also from Fig. 8. It presents
the evolution with C of the dimensionless size Sc/H of
the smallest cell (along the upper disk) in the axial direction
defined in Fig. 7b. In the smooth disk case, we notice that
Sc decreases rapidly for decreasing values of jCj in the
range �1 6 C 6 �0.8 (see also Fig. 7a–c) following Sc/
H / �2.2C. For smallest values of jCj, the cell is reduced
to a very thin region attached to the upper disk (Fig. 7d),
which disappears progressively along the external cylinder
and so Sc tends to zero.

In Fig. 8, our results are compared to the ones obtained
by Kilic et al. (1994) and Gan et al. (1994), who performed
calculations for �1 6 C 6 0 and G = 0.12 using a classical
k � � turbulence model. Considering that the k � � predic-
tion of these authors is in relatively good agreement with
the smooth disk case, the comparison given in Fig. 8 may
be meaningful to get an idea of the effect of aspect ratio.
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For Re = 105, Kilic et al. (1994) found that the evolution
of Sc against C is non-monotonous. It decreases more
slowly from C = �1 to C = �0.2 than in our case. It is a
combined effect of both the Reynolds number and the
aspect ratio of the cavity. For C = �0.4, they observed a
double transition: from laminar to turbulent flow and from
Batchelor to Stewartson type of flow. The decrease of Sc is
much faster with C in the laminar case (Kilic et al., 1994).
For Re = 1.25 · 106, Gan et al. (1994) obtained streamline
patterns different from the ones shown in Fig. 7 for
C = [ � 0.8; � 0.2] essentially because of the small value
of G. A large cell along the slower disk is still observed
for C = �0.4. This cell is trapped by the main flow due
to the faster disk in the zone 0.3 6 r* 6 0.45.
4.3. Turbulence field in the exact counter-rotating regime

As already mentioned above, the influences of both
the Reynolds number and the aspect ratio are relatively
weak (compared to the effect of the ratio C between the
rotation rates). In the following, we focus on the exact
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counter-rotating regime C = �1 and Re and G are fixed
respectively to Re = 6.28 · 105 and G = 1.8.

Fig. 9 presents the axial profiles of the six components of
the Reynolds stress tensor. These components are normal-
ized by the local disk 1 velocity X1r. For example, R�rr is
defined as: R�rr ¼ v02r =ðX1rÞ2. As in all rotating disk prob-
lems (Poncet et al., 2005), turbulence is mainly concen-
trated in the boundary layers with the same turbulence
levels in the upper and lower disk boundary layers. The
main difference with the rotor–stator configuration is that
turbulence is also generated in the median region of the
interdisk spacing and is due to the shear, stretched by the
recirculations. The Von Kármán arrangement is indeed
known to produce an intense turbulence in a compact
region of space (Maurer et al., 1994). The magnitudes of
the three normal components (in principal axes) are almost
the same in the equatorial plane. It means that turbulence
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Fig. 10. C = �1, G = 1.8 and Re = 6.28 · 105 in the smooth disk case (RSM
invariant map at r* = 0.51: (·) �1 6 z* 6 0, (h) 0 6 z* 6 1.
is quasi isotropic in that region. The cross components are
quite weak except for the R�rh component, which behaves
like the normal components with a bump at mid-plane.

As expected, the maximum of the turbulence Reynolds
number Ret = k2/(m�) = 5836 is located in the shear layer
close to the periphery of the cavity, where the highest val-
ues of the local Reynolds number Rer = X1r2/m are
obtained (Fig. 10a). This maximum is to be compared to
the maximum value Ret ’ 500 obtained by Poncet (2005)
for C = 0 and Re ’ 106, which indicates the high turbu-
lence level in that region.

Fig. 10b shows the anisotropy invariant map for the
Reynolds stress tensor in the whole interdisk spacing at
r* = 0.51. The second A2 and third A3 invariants of the
anisotropy tensor aij of the second moments of the fluctu-
ations are defined as: A2 = aijaji and A3 = aijajkaki (Lumley,
1978), where aij ¼ Rij=k � 2

3
dij (dij the Kronecker symbol).

The results of the RSM model satisfy the realizability dia-
gram of Lumley (1978). Very close to the disks, the turbu-
lence tends to follow the two-component behavior as the
wall normal fluctuations are damped more effectively than
fluctuations parallel to the disk. Outside the boundary lay-
ers and especially in the shear layer, the turbulence is fairly
close to the isotropic case (A2 = A3 = 0), which confirms
the results observed from Fig. 9. Note that very close to
the mid-plane, the flow tends to the axisymmetric limit.
5. Bladed disk case: Inertial stirring

To increase the efficiency of the disks in forcing the flow,
we used n blades of height h* mounted on both disks. The
stirring is called inertial because the fluid is set into motion
thanks to areas of forcing perpendicular to the motion
itself. In that case, Ravelet (2005) showed that all mean
and turbulent quantities are independent of the Reynolds
number in the range Re = [105,2 · 106]. Thus, we have cho-
sen to fix the values of Re ’ 2 · 105 and G = 1.8. In that
case, the boundary layers are separated and the flow is
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found to be highly turbulent. Moreover, direct compari-
sons with the experiments of Ravelet (2005) can be per-
formed. The purpose of this section is to propose an
efficient way to model the effect of straight blades on both
the mean and turbulent fields.
5.1. Flow structure in the exact counter-rotating regime

In the bladed disk case, the flow structure is completely
different from the smooth disk case, where the velocity gra-
dient are located in the boundary layers along the disks and
decrease when the Reynolds number increases. For an iner-
tially driven flow, the mean flow does not present any
appreciable velocity gradient in the vicinity of the blades
(Fig. 11) and the gradients are distributed in the median
region of the flow. The mean flow is divided into three main
regions: a shear layer at mid-plane and two fluid regions
close to each bladed disks. The intensity of the shear at
mid-plane is increased compared to the viscous stirring
case. This shear is due to the two recirculation cells. It
induces a strong radial inflow (Vr < 0) around z* = 0 and
two opposite axial flows towards the disks. The magnitude
of the mean axial and radial velocity components increase
from the periphery (Fig. 11c) to the rotation axis (Fig. 11a).
From the disk to the top of the blades, the tangential fluid
velocity is fairly close to the local disk velocity. Moreover,
a strong radial outflow is created along the bladed disks
and goes with the impellers. At the top of the blades, there
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Fig. 11. Axial profiles of the mean velocity components for C = �1, Re = 2 · 10
r* = 0.4, (b) r* = 0.5, and (c) r* = 0.6. Comparisons between the predictions of
is a strong decrease of jVhj interpreted as the wake of the
blades. There is a very good agreement between the numer-
ical predictions and the velocity measurements concerning
the Vh-profiles. A small difference is observed in the shear
layer, where the RSM model predicts a thinner layer than
the one measured by Ravelet (2005). This last author
observed, for the same set of parameters, high energy levels
for frequencies inferior to the injection frequency. This
contribution is attributed to the appearance of strong
coherent structures in the shear layer not observed in the
smooth disk case and which may explain the weak discrep-
ancies obtained.
5.2. Flow structure for �1 6 C 6 0

We perform the same analysis as in the smooth disk case
by varying the ratio C between the two rotating disk speeds.
Fig. 8 presents comparisons between the smooth and bladed
disk cases concerning the size Sc of the cell along the slowest
disk for �1 6 C 6 0. The same behavior is obtained but the
transition between the two cell and the one cell structures
(Sc! 0) is slightly delayed. It occurs in the inertial stirring
case for C ’ �0.65, which is close to the experimental value
obtained by Cadot and Le Maı̂tre (2007) in the same config-
uration C = �0.69 and the analytical one obtained by Dijk-
stra and Van Heijst (1983) for Re! 0 in the smooth disk
case C = �2/3. The measurements of Ravelet (2005) reveal
a transition for C = �0.78. It confirms the similitude
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the RSM model (lines) and the LDV measurements of Ravelet (2005) (s).
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observed by Cadot and Le Maı̂tre (2007) between the
smooth disk flow with a large viscosity and the mean flow
in the inertial stirring case.

The transition from the two cell to the one cell structures
can be seen also from Fig. 12. Compared to the smooth
disk case, the cell along the slowest disk is larger for
C = �0.8 (Fig. 12b). For C = �0.7, only a small recircula-
tion subsists along the upper disk and completely disap-
pears for C = �0.6. For C P �0.6, the same pattern is
observed with streamlines parallel to the rotation axis.

5.3. Turbulence field in the exact counter-rotating regime

To enable direct comparisons with the viscous stirring
case, Fig. 13 presents the axial profiles of the six compo-
nents of the Reynolds stress tensor at the same radius
r* = 0.81 and for the same values of G and C. The main dif-
ference between the smooth and the bladed disk configura-
tions is that, in the latter case, the turbulence intensities
vanish towards the disks. Apart from that, turbulence is
also mostly generated at mid-plane because of the shear
stretched by the recirculations. The blades induce a much
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hh .
stronger shear zone in the equatorial plane compared to
the smooth disk case as already seen from the mean veloc-
ity profiles (Fig. 11). Thus, the turbulence levels, regarding
the normal Reynolds stress components (Fig. 13a), are
almost 20 times larger than for viscous stirring and quite
comparable to the mean fluid velocity. It confirms the pre-
vious measurements of Cadot et al. (1997) in steady
regimes of turbulence in the Von Kármán geometry. They
found that the fluid velocity fluctuations are close to the
fluid mean velocity and 6 times larger in the bladed disk
case than in the smooth disk case. In the present study,
the R�rr component is much weaker than the two other nor-
mal components, which indicates the turbulence anisotropy
in the core of the flow. The cross components are also
stronger than in the smooth disk case. The level of the
R�rh component (Fig. 13b) is of the order of R�rr. Note that
the maximum of the R�1=2

hh component obtained at mid-
plane (z* = 0) using the RSM model is in excellent agree-
ment with the asymptotic value measured by Ravelet
(2005) for Re P 104 (relative error inferior to 0.1%). Nev-
ertheless, one must remark that only a single measurement
point is available, and consequently it is hard to derive def-
inite conclusions. Another point is that the periodic
unsteadiness introduced by the blades is not exactly
accounted for in the calculation and may explain small dis-
crepancies in the mean velocity profiles.

To study the influence of the number n of blades and
their height h* on the turbulent field, Fig. 14 shows radial
profiles of the turbulence kinetic energy k* normalized by
(X1Rc)

2 for various impeller configurations. These profiles
are plotted at mid-plane where the maximum of k* prevails.
As expected, k* increases towards the periphery of the cav-
ity, it means for increasing local Reynolds number. Then,
k* decreases for radial locations in the gap between the
disks and the external cylinder. We can first notice the very
weak level of turbulence kinetic energy in the smooth disk
case compared to the other bladed disk cases. Secondly, the
influence of the blade number n is quite weak for n = 4, 8
or 16. Only very close to the rotation axis, we can notice
a different behavior in the configuration with 16 blades.
Nevertheless, in the whole flow, four blades seem to be suf-
ficient to force the flow. On the other hand, the blade
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height h plays a more important role. The k* level is twice
higher when the blades are twice higher too.

It is now established that all mean and turbulent quan-
tities are independent of the Reynolds number in the range
Re = [105,2 · 106]. The turbulent dissipation is indeed
much stronger than the dissipation due to the boundary
layers and hides the dependence on Re. All these results
can thus be extended to higher Reynolds numbers.

6. Conclusion

We have performed some comparisons between numer-
ical predictions using a RSM model and velocity measure-
ments considering the turbulent flow between two flat or
bladed counter-rotating disks. This configuration known
as the Von Kármán geometry is used to produce an intense
turbulence in a compact region of space.

For viscous stirring, the flow is of Stewartson type close
to the rotation axis and so exhibits three distinct regions:
two boundary layers and one shear layer at mid-plane.
When one approaches the periphery of the cavity, for
r* ’ 0.476, the flow gets of Batchelor type. Turbulence is
mainly concentrated in the boundary layers and in the tran-
sitional shear layer, where turbulence is almost isotropic.
Turbulence intensities increase towards the outer cylinder.
When one decreases the aspect ratio of the cavity until
G 6 0.4, the boundary layers mixed and the flow is then
of torsional Couette type for lower values of G. In the case
of inertial stirring, the impellers are more efficient to force
the flow. Thus, the transitional shear layer intensifies. Tur-
bulence is so mainly concentrated around z* = 0 and
vanish towards the disks. The turbulence intensities are
almost 20 times larger than in the flat disk case. The height
of the blades is found to be the preponderant parameter to
increase the turbulence intensities more than the number of
blades. In the flat and bladed disk cases, we have numeri-
cally verified the statement of Cadot et al. (1997): ‘‘smooth
or rough, the efficiency of a given type of stirrer to set the
bulk of the fluid in motion is independent of the Reynolds
number’’. Moreover, we have characterized the transition
between the two cell and the one cell regimes. For inertial
stirring, it occurs for C ’ �0.65 close to the values
obtained by Dijkstra and Van Heijst (1983) and Cadot
and Le Maı̂tre (2007).

The agreement between the numerical predictions and
the LDV measurements is very satisfactory in both cases.
For the first time, an easy and efficient way to model the
main effect of straight blades has been proposed. Further
experimental works are now required to provide more
comparisons for the turbulent fields but also some calcula-
tions for curved blades.
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l’écoulement de Von Kármán en cylindre fini. Ph.D. thesis, École
Polytechnique.
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